

Temperature Measurement Experts

Series 100

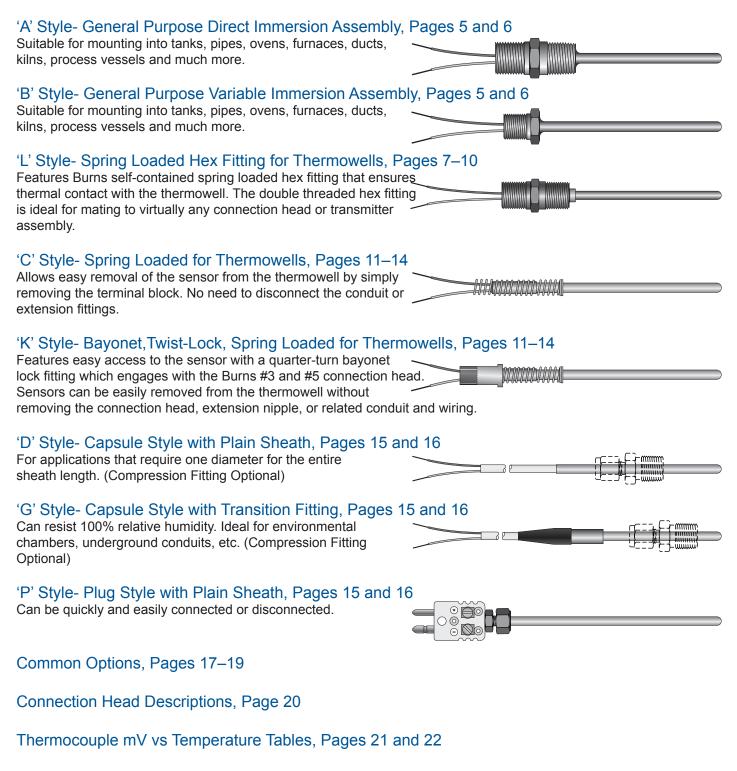
Temperature Measurement Experts®

Since 1960, Burns Engineering has been an industry leader in the design and manufacture of temperature sensors. Accuracy, reliability and consistency are hallmarks of the Burns brand. At Burns, we focus on the measurement. We understand the subtleties of temperature measurement, from selection through installation, and how they can impact your processes and ultimately your success. We worry about the details so you don't have to. When you select Burns you're getting more than a sensor, you're getting your own team of Temperature Measurement Experts.

Series 100 Thermocouples

These rugged sensors have proven performance and are designed for maximum service life. Our Series 100 Special Limits Thermocouples are available in Type E, J, K, N, or T and various styles, lead wire configurations, thermowells, connection heads, as well as custom designs, to meet the broad demands of industrial processes.

Get a Web Quote:


Visit BurnsEngineering.com to configure your sensor today.

Here's how:

- 1. Register or sign-in
- 2. Search for the model (100A, 100K, etc.) using the search box (upper right) or click on the Product/Quote tab and select the model of interest.
- 3. Click on 'Configure My Part'.
- 4. Select the parameters to support your application
- 5. Add to Quote Cart.
- 6. Submit Cart for Quote We'll be in touch shortly.

Product Index Series 100 Thermocouples

Overview and Specifications, Pages 3 and 4

Series 100 Thermocouples

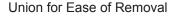
Overview and Specifications

Series 100 Overview

Series 100 thermocouples are highly configurable to meet your specific process needs. With styles including direct immersion for easy installation, spring loaded to ensure positive contact in the thermowell, and capsule for ultimate installation flexibility. These all purpose sensors provide exceptional performance with a proven track record of durability.

The Series 100 offers 5 thermocouple types; E, J, K, N, and T all with Special Limits tolerance class (typical tolerance is ½ the standard limits thermocouple). Designed with mineral insulated metal sheaths, in both grounded and ungrounded options, these thermocouples provide accurate measurements and long life expectancy.

Multiple configurations are approved through Factory Mutual (FM) for hazardous environments:


EXPLOSION PROOF: CLASS I, DIV. 1, GROUPS A, B, C, D DUST IGNITION PROOF: CLASS II & III, DIV. 1, GROUPS E, F, G NEMA 4X (CARBON STEEL THERMOWELLS ARE APPROVED FOR NEMA 4 ONLY)

Configurations available include:

Fast Response Design

Classic Flanged Thermowell

Although numerous configurations are available from our catalog or website, if your process needs something a bit different, we will modify or customize to provide the best solution for your measurement need.

Thermocouple Types

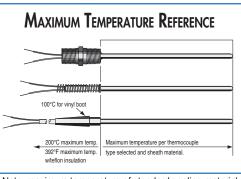
ANSI	Single	Wire Material,		Sheath Material	Lead Wire Color Code	
Thermocouple Type	Element Wire Designations	Generic & Trade Names			Individual Wire Insulator	Cable
E	EP EN	Chromel™ Constantan	No No	316SS	Purple Red	Brown
J	JP JN	Iron Constantan	Yes No	316SS	White Red	Brown
К	KP KN	Chromel™ Alumel™	No Yes	Inconel® 600	Yellow Red	Brown
N	NP NN	Nicrosil Nisil	No No	Inconel® 600	Orange Red	Brown
Т	TP TN	Copper Constantan	No No	316SS	Blue Red	Brown

Accuracy and thermocouple interchangeability: All materials are in accordance with ANSI MC 96.1, Special Limits of Error.

Temperature Range & Initial Calibration Tolerances

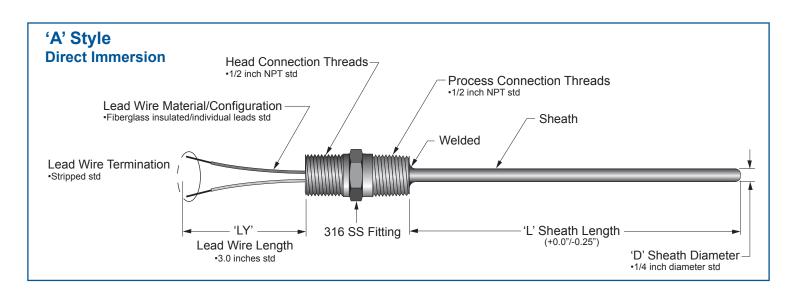
ANSI Thermocouple Type	Temperature Range	Special Limits (% applies to temperature measure in °C)
E	-200°C to -170°C (-328°F to -274°F) -170°C to 125°C (-274°F to 257°F) 125°C to 870°C (257°F to 1598°F)	±0.8% ±0.5°C (±0.9°F) ±0.4%
J	0°C to 275°C (32°F to 527°F) 275°C to 750°C (527°F to 1382°F)	±1.1°C (±2.0°F) ±0.4%
К	0°C to 275°C (32°F to 527°F) 275°C to 1180°C (527°F to 2156°F)	±1.1°C (±2.0°F) ±0.4%
Ν	-40°C to 375°C 375°C to 1000°C	±1.5°C ±0.4%
Т	-200°C to -62.5°C (-328°F to -80.5°F) -62.5°C to 125°C (-80.5°F to 257°F) 125°C to 350°C (257°F to 662°F)	±0.8% ±0.5°C (±0.9°F) ±0.4%

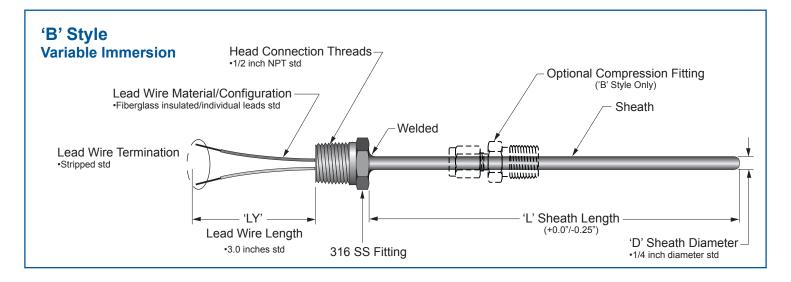
		m\	/ in degrees	С	
Temp C	E	J	К	N	т
-50	-2.787	-2.431	-1.889	-1.269	-1.819
-45	-2.523	-2.197	-1.709	-1.146	-1.64
-40	-2.255	-1.961	-1.527	-1.023	
-35	-1.984	-1.722	-1.343	-0.898	1
-30	-1.709	-1.482	-1.156	-0.772	
-25	-1.432	-1.239	-0.968	-0.646	/
-20	-1.152	-0.995	-0.778	-0.518	
-15	-0.868	-0.749	-0.586	-0.390	
-10	-0.582	-0.501	-0.392		
-5	-0.292	-0.251	-0.197		
0	0	0	0	/	
5	0.294	0.253	0.198 /		
10	0.591	0.507	0.397		
15	0.89	0.762	0,5		
20	1.192	1 0 1 0			
25	1,400				


See page 21 and 22 for Millivolts vs Temperature data for each thermocouple type.

Sheath Diameter and Wire Gauge

Sheath Diameter	Single Element AWG	Dual Element AWG
1/4"	16	18
3/16"	19	21
1/8"	22	24


Bend Radius:

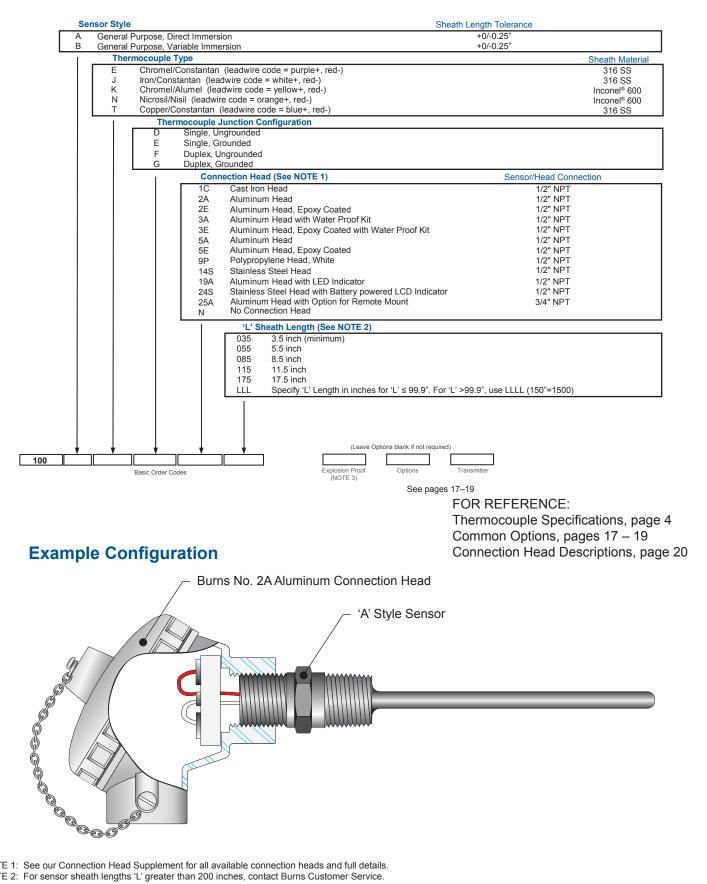

Sheath is bendable with a 3/4" minimum radius. See complete bend criteria on pg 18, Sheath Options.

Note: maximum temperature of standard sealing material at cable/sheath transition is 200°C/392°F

'A' and 'B' Style Direct Immersion Sensors

'A' Style Application

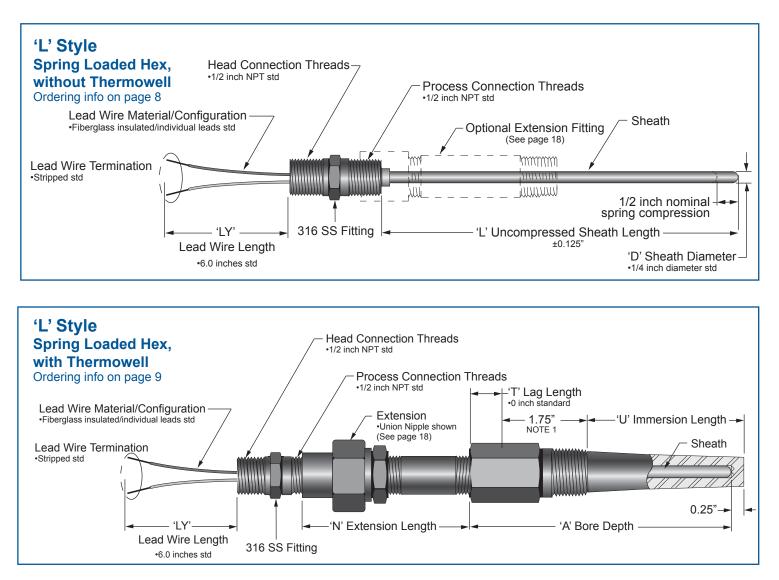
Designed for direct immersion into the process where fast response is needed or in small diameter lines where a thermowell can't be used. Pressure rated to 3000 psi.


'B' Style Application

Provides installation flexability with variable immersion feature. Brass or 316 SS compression fitting with PTFE or SS ferrules are available. PTFE allows for readjustment of the immersion length.

'A' and 'B' Style Direct Immersion Sensors

Ordering Information


NOTE 1: See our Connection Head Supplement for all available connection heads and full details.

NOTE 2: For sensor sheath lengths 'L' greater than 200 inches, contact Burns Customer Service.

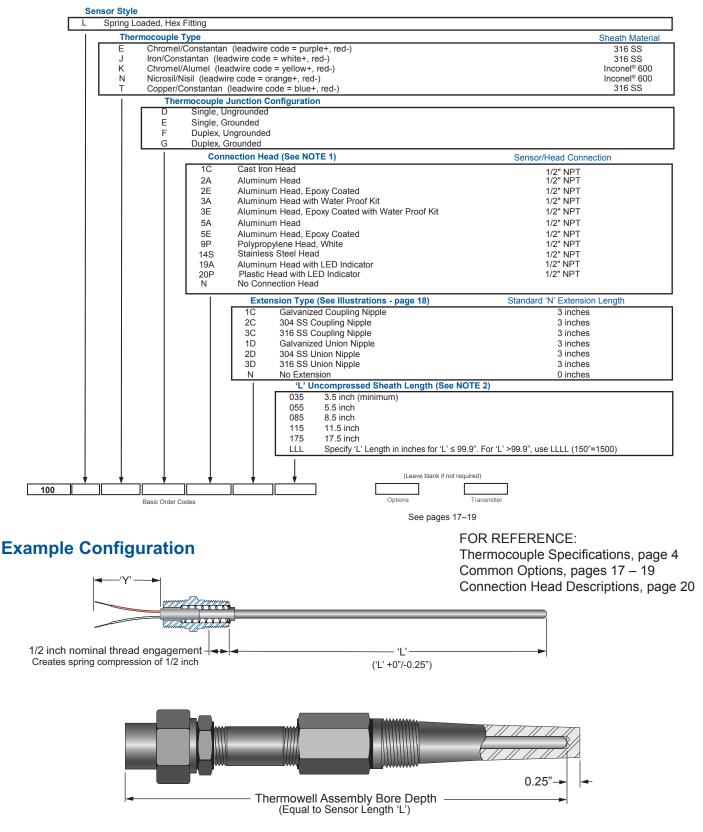
NOTE 3: For FM explosion proof approved assembly, enter '/AFM' code. See page 3 for ratings and drawing # 18938 for approved product structure details.

'L' Style Spring Loaded Hex Fitting Sensors

Specifications

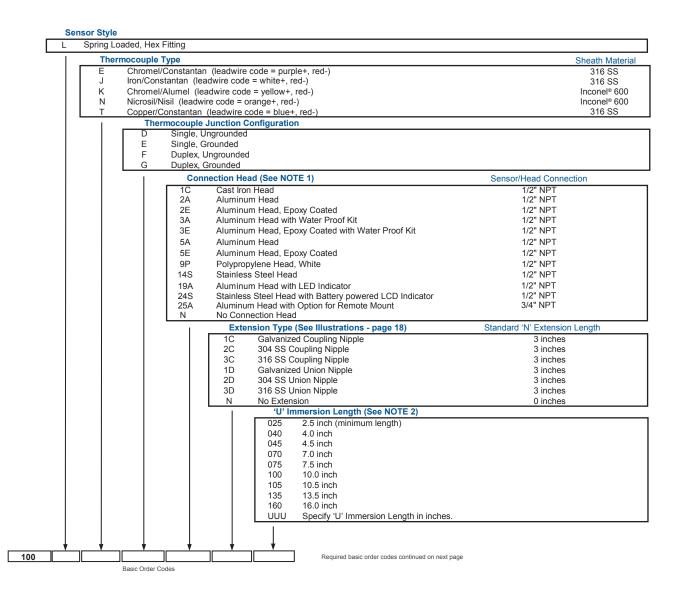
'L' Style Application

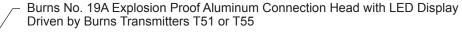
Adaptable to a variety of connection heads or direct to conduit. Union connection allows for easy removal for calibration without disconnecting the leads.

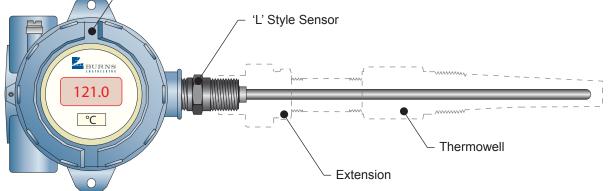

Length Code Definitions and Equations for 'L' Style Assemblies			
Length Codes	For Threaded & Socket Wells	For Flanged Wells	
⁽ L' Uncompressed Sheath Length ⁽ U' Immersion Length ⁽ N' Extension Length ⁽ A' Well Bore Depth ⁽ T' Well Lag Length	L = N + A L = N + U + T + 1.5 A = U + T + 1.5	L = N + A L = N + U + T + 2 A = U + T + 2	

NOTE 1: 1.75 inch length is used on threaded and socket weld thermowells. A 2.25 inch length is used with flanged wells.

L' Style Spring Loaded Hex Fitting Sensors without Thermowell

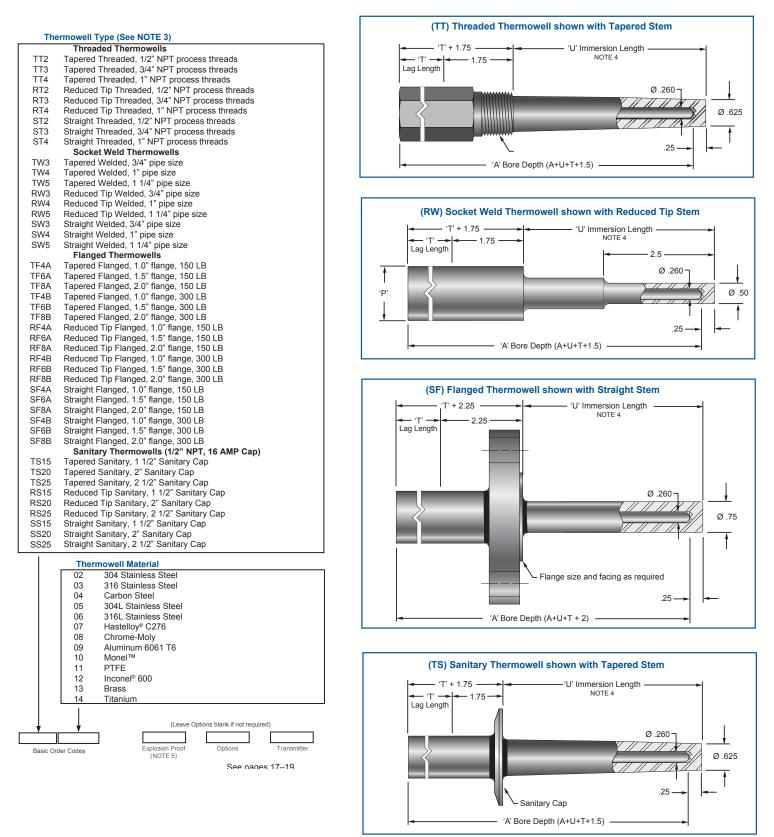

Ordering Information


NOTE 1: See our Connection Head Supplement for all available connection heads and full details. NOTE 2: For sensor sheath lengths 'L' greater than 200 inches, contact Burns Customer Service.


'L' Style Spring Loaded Hex Fitting Sensors with Thermowell

Ordering Information (1 of 2)

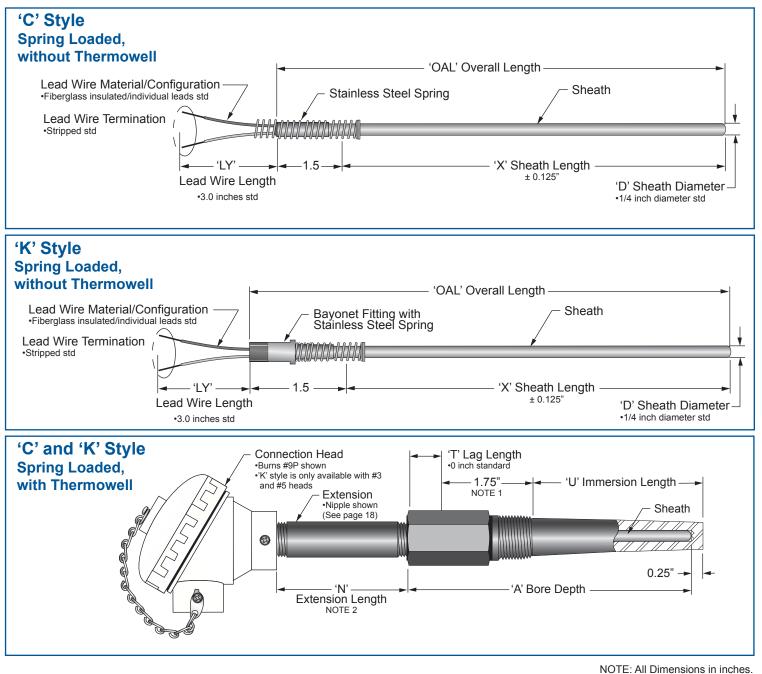
Example Configuration



NOTE 1: See our Connection Head Supplement for all available connection heads and full details.

NOTE 2: For Thermowells with Bore Depths ('A') greater that 42 inches contact Burns Customer Service. Long length wells can be constructed from welded bar stock segments or from pipe. Specifics of the application must be verified to ensure the thermowell design meets your process needs.

'L' Style Spring Loaded Hex Fitting Sensors with Thermowell


Ordering Information (2 of 2)

NOTE 3: See our Thermowell catalog or visit us on-line at burnsengineering.com for a full line of standard thermowell styles along with information on custom thermowells. NOTE 4: For Thermowells with Bore Depths ('A') greater that 42 inches contact Burns Customer Service. Long length wells can be constructed from welded bar stock segments or from pipe. Specifics of the application must be verified to ensure the thermowell design meets your process needs.

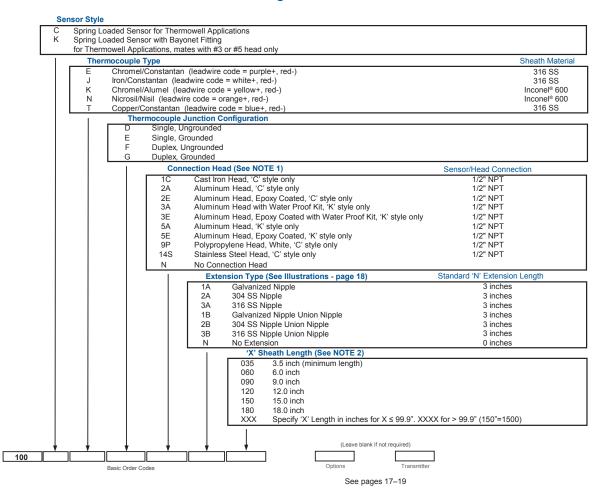
NOTE 5: For FM explosion proof approved assembly, enter '/AFM' code. See page 3 for ratings and drawing # 18938 for approved product structure details.

'C' and 'K' Style Spring Loaded Sensors

'C' Style Application

Assembly allows easy removal of the sensor through the connection head. No wrenches required.

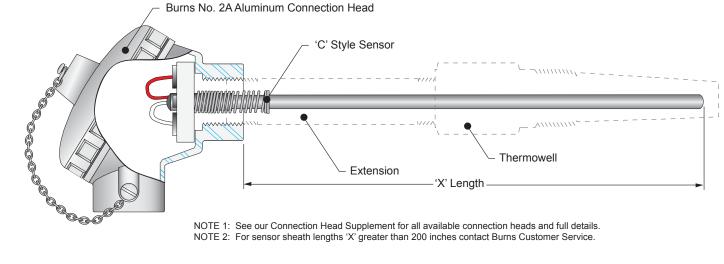
'K' Style Application


Similar to the 'C' Style but with the addition of a 1/4 turn twist lock fitting for even easier removal of the sensor. Add longer leads and it makes calibration checks possible with no tools required. Works with #3 and #5 connection heads only.

NOTE 1: 1.75 inch length is used on threaded and socket weld thermowells; a 2.25 inch length is used with flanged wells NOTE 2: When a 'C' style assembly is ordered with a transmitter the actual 'N', nominal extension length, will be 1/2" long than specified.

Spring Loaded Sensors without Thermowell

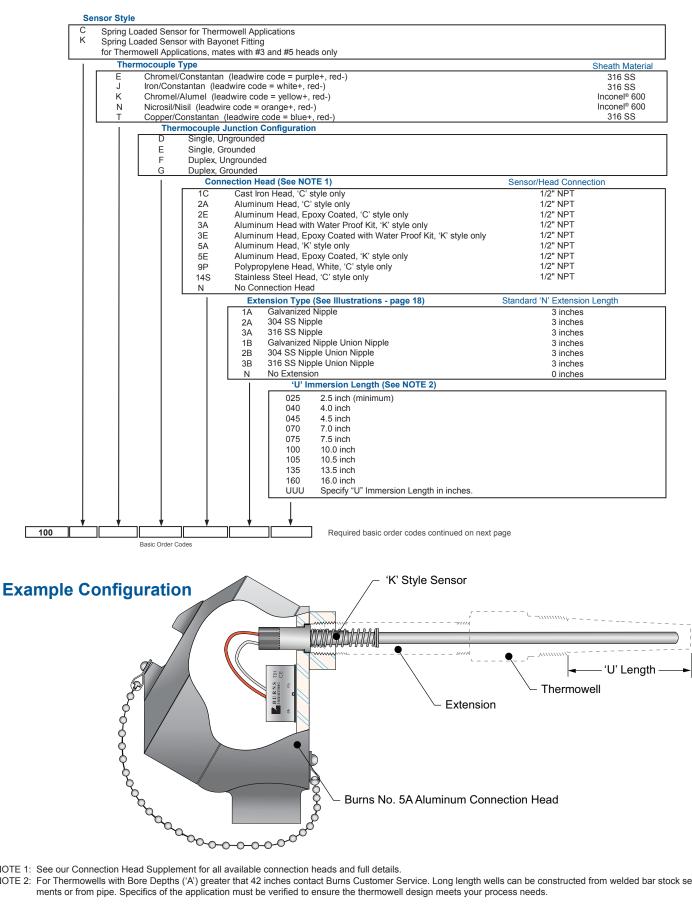
Ordering Information



FOR REFERENCE:

Thermocouple Specifications, page 4 Common Options, pages 17 - 19 Connection Head Descriptions, page 20

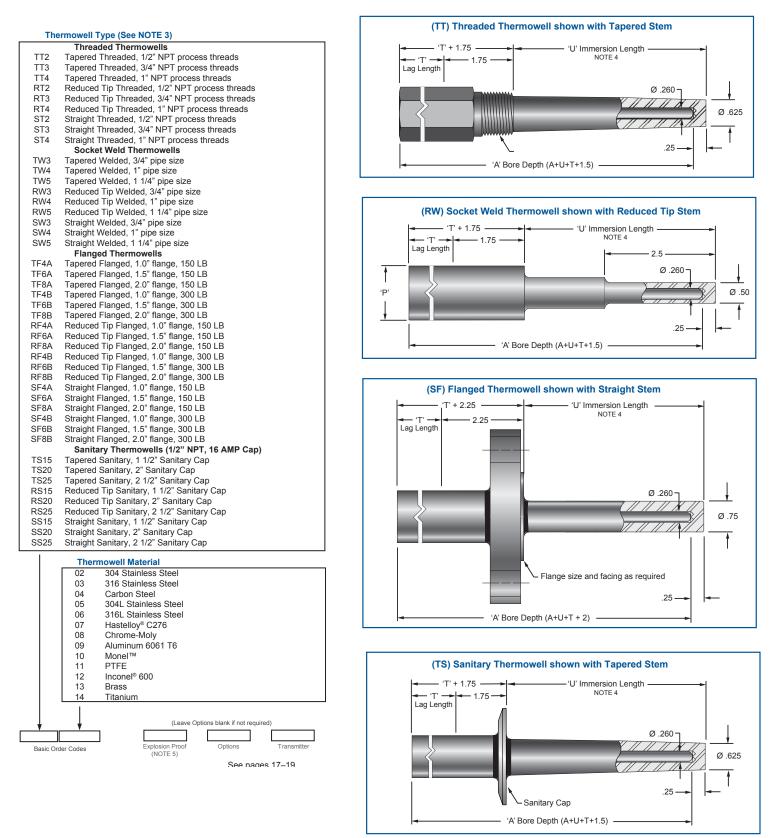
Length Code Definitions and Equations for 'C' and 'K' Style Assemblies				
Length Codes	For Threaded & Socket Wells	For Flanged Wells		
'X' Sheath Length 'U' Immersion Length 'OAL' Overall Length 'N' Extension Length 'A' Well Bore Depth 'T' Well Lag Length	X = OAL - 1.5 X = N + A X = N + U + T + 1.5 A = U + T + 1.5	X + OAL - 1.5 X + N + A X + N + U + T + 2 A = U + T + 2		


Example Configuration

NOTE 1: See our Connection Head Supplement for all available connection heads and full details. NOTE 2: For sensor sheath lengths 'X' greater than 200 inches contact Burns Customer Service.

'C' and 'K' Style Spring Loaded Sensors with Thermowell

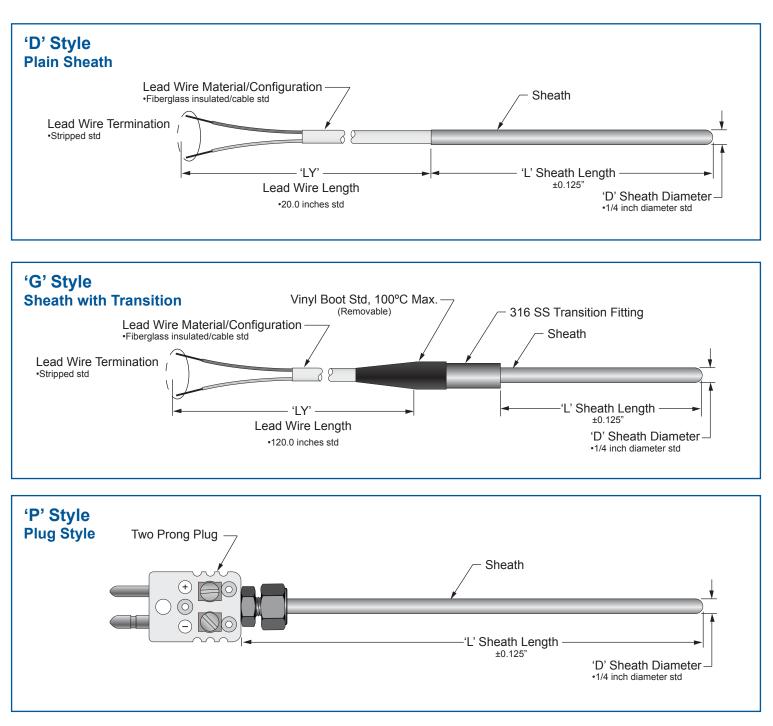
Ordering Information (1 of 2)



NOTE 1: See our Connection Head Supplement for all available connection heads and full details.

NOTE 2: For Thermowells with Bore Depths ('A') greater that 42 inches contact Burns Customer Service. Long length wells can be constructed from welded bar stock segments or from pipe. Specifics of the application must be verified to ensure the thermowell design meets your process needs.

'C' and 'K' Style Spring Loaded Sensors with Thermowell


Ordering Information (2 of 2)

NOTE 3: See our Thermowell catalog or visit us on-line at burnsengineering.com for a full line of standard thermowell styles along with information on custom thermowells. NOTE 4: For Thermowells with Bore Depths ('A') greater that 42 inches contact Burns Customer Service. Long length wells can be constructed from welded bar stock segments or from pipe. Specifics of the application must be verified to ensure the thermowell design meets your process needs.

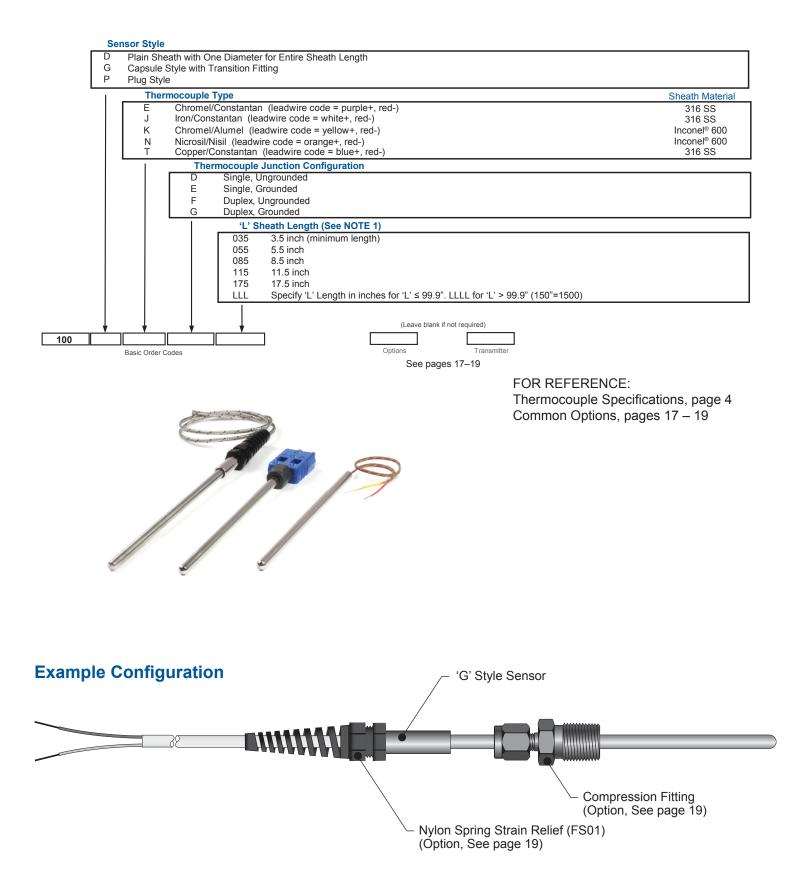
NOTE 5: For FM explosion proof approved assembly, enter '/AFM' code. See page 3 for ratings and drawing # 18938 for approved product structure details.

'D', 'G', and 'P' Style Capsule Sensors

'D' Style Application

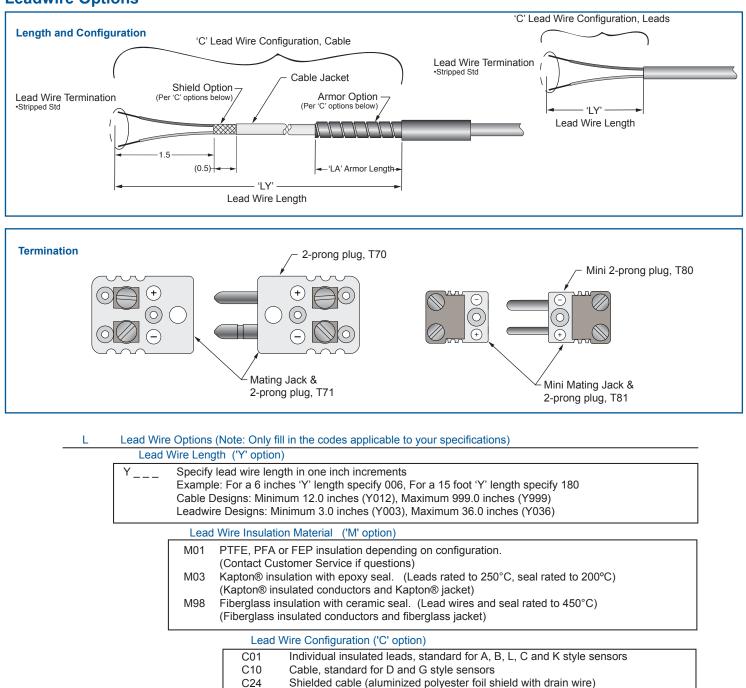
Straight sheath allows pass through in tight locations.

'G' Style Application


Addition of the transition fitting improves moisture resistance. Recommended where humidity is high.

'P' Style Application

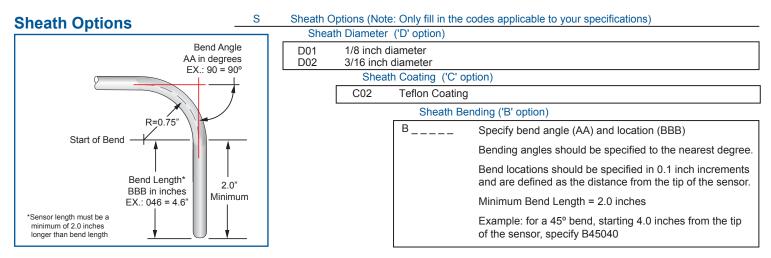
Standard or mini two pin thermocouple plug allows use with multiple readouts and portable equipment.


'D', 'G', and 'P' Style Capsule Sensors

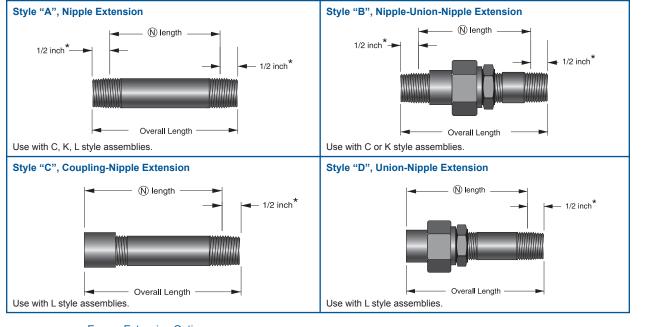
NOTE 1: For sensor sheath lengths 'L' greater than 200 inches contact Burns Customer Service.

Common Option Codes

Leadwire Options


- C24 Shielded cable (aluminized polyester foil shield wit C30 Cable with stainless steel overbraid
 - C40 Cable with stainless steel overblaid C40 Cable with stainless steel armor, specify armor length below
- C41 Shielded cable with stainless steel armor, specify armor length below
- C54 Shielded cable with stainless steel overbraid

Armor Length ('A' option)


A	Specify armor length in one inch increments 'A' Armor Length must be at least 6 inches less than lead wire length example: For a 15 foot 'A' Armor Length specify 180			
	Lead Wire Termination ('T' option)			
	T70 Two prong plug			
	T71	Two prong plug with mating jack		
	T80	Miniature two prong plug		
	T81	Miniature two prong plug with mating jack		

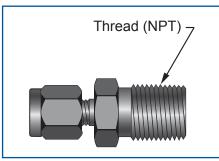
Common Option Codes

Extension Options (*1/2" is normal thread engagement for 1/2" NPT fittings)

E Extension Options

Extension Length ('N' option)		
N	Specify extension length in 0.5 inch increments Minimum Length is 1.0 inch (N10), Maximum Length is 9.5 inches (N95) Example: N60 = 'N' length of 6.0 inches	

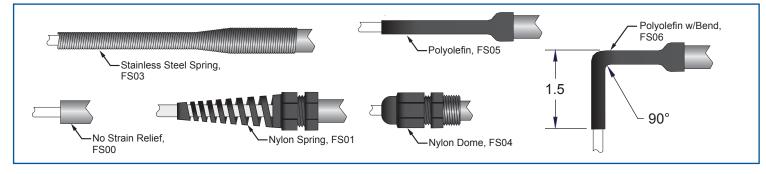
Thermowell Options


W Thermowell Options (Note: Only fill in the codes applicable to your specifications)

Lag Extension ('T' option)					
T30) 3.0 inches				
Τ	Specify la	ag length in 0.1 inch increments			
	Minimum	Length is 0.5 inch (T05), Maximum Length is 9.9 inches (T99)			
	Example	: T45 = 'T' length of 4.5 inches			
	Testi	ng and Documentation Options ('E' option)			
	E01	Hydrostatic internal pressure testing per ASTM specifications			
	E02	Dye penetrant testing per ASTM specifications			
	E03	X-ray examination per ASTM specifications			
	E04	Material certification of thermowell, not available with brass			
	E05	Murdock stength calculations			
	E06	Surface Finish certification of thermowell			
	E07	Canadian Registration Number (CNR) provided with thermowell			
	E15	Hydrostatic external pressure testing			
	E16	Positive material identification (PMI)			

E16 Positive material identification (PMI) E17 Inspection Certificate (ISO 10474, EN 10204, DIN 50049)

Common Option Codes


Compression Fitting Options

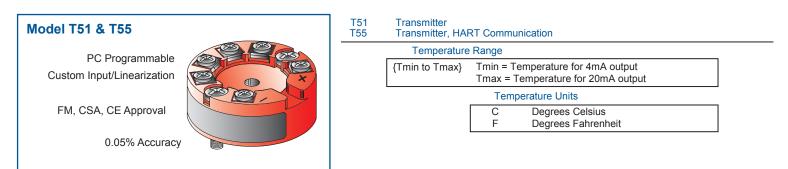
FC Fitting Options, Compression ('C' option)

-					
	Fitting Material				
	03	316 Stainless Steel			
	13	Brass			
I		Ferrule Type			
		1 PTFE, re-adjustable			
		2 Stainless Steel			
		Threads			
		1 1/8" NPT			
		3 1/4" NPT			
		4 3/8" NPT			
		5 1/2" NPT			

Strain Relief Options

F Fitting Options

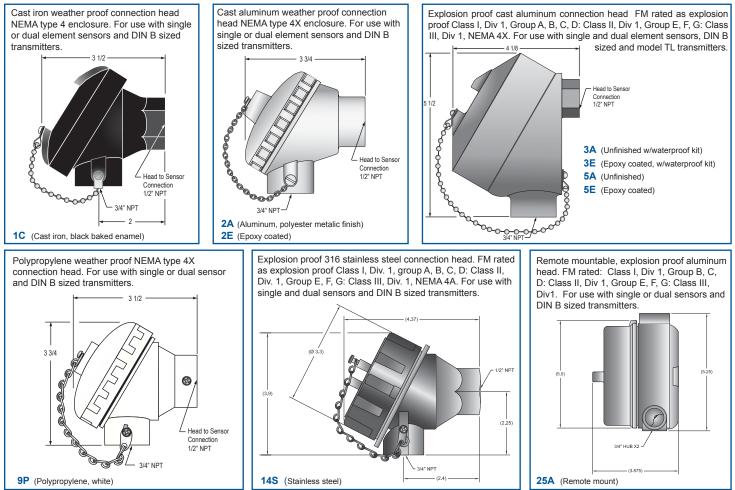
Strair	n Relief Options ('S' option) available only with 'G' Style sensor
S01	Nylon Spring, Maximum temperature 100°C
S03	Stainless Steel Spring
S04	Nylon Dome, Maximum temperature 100°C
S05	Polyolefin, Adhesive lined, Maximum temperature 100°C
S06	Polyolefin, Adhesive lined with 90 degree bend, Maximum temperature 100°C


Tagging Options

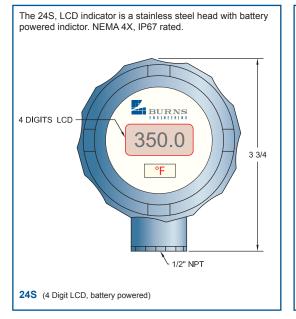
Μ

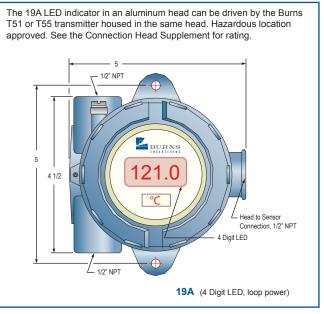
Miscellaneous Options				
Sens	or Tagging Options ('T' Options)			
T01	Paper Tag with Tag Number (sensor assembly)			
T02	Stainless Steel Tag with Tag Number (sensor assembly)			
T26	Tag Number Electro-etched on Sensor Sheath			

Transmitters


We offer a full range of transmitters to meet your requirements. Our transmitters provide fast response and accurate measurements over the entire temperature range. They are designed for monitoring and control applications. For more information on our complete transmitter offering see our transmitter catalog or contact our factory.

Connection Head Descriptions


Standard Enclosures


Burns Engineering offers a variety of connection heads to complement the sensor (RTD or Thermocouple) and its operational environment. Choose from the following materials, sizes and ratings. See Burns Connection Head Supplement for all available heads and additional details.

Enclosures with Indicators

Burns offers loop powered (LED) and battery powered (LCD) indicators, available in three enclosure options. See the Burns Connection Head Supplement for all available Heads and Indicators.

Millivolts vs Temperature Thermocouple Reference Table

mV vs T °C

Г	mV in degrees C					
Temp C	Е	J	K	Ν	Т	
-50	-2.787	-2.431	-1.889	-1.269	-1.819	
-45	-2.523	-2.197	-1.709	-1.146	-1.648	
-40	-2.255	-1.961	-1.527	-1.023	-1.475	
-35	-1.984	-1.722	-1.343	-0.898	-1.299	
-30	-1.709	-1.482	-1.156	-0.772	-1.121	
-25	-1.432	-1.239	-0.968	-0.646	-0.94	
-20	-1.152	-0.995	-0.778	-0.518	-0.757	
-15	-0.868	-0.749	-0.586	-0.390	-0.571	
-10	-0.582	-0.501	-0.392	-0.260	-0.383	
-5	-0.292	-0.251	-0.197	-0.131	-0.193	
0	0	0	0	0.000	0	
5	0.294	0.253	0.198	0.130	0.195	
10	0.591	0.507	0.397	0.261	0.391	
15	0.89	0.762	0.597	0.393	0.589	
20	1.192	1.019	0.798	0.525	0.79	
25	1.495	1.277	1	0.659	0.992	
30	1.801	1.537	1.203	0.793	1.196	
35	2.109	1.797	1.407	0.928	1.403	
40	2.42	2.059	1.612	1.065	1.612	
45	2.733	2.322	1.817	1.202	1.823	
50	3.048	2.585	2.023	1.340	2.036	
55	3.365	2.85	2.23	1.479	2.251	
60	3.685	3.116	2.436	1.619	2.468	
65	4.006	3.382	2.644	1.760	2.687	
70	4.33	3.65	2.851	1.902	2.909	
75	4.656	3.918	3.059	2.045	3.132	
80	4.985	4.187	3.267	2.189	3.358	
85	5.315	4.456	3.474	2.334	3.585	
90	5.648	4.726	3.682	2.480	3.814	
95	5.982	4.997	3.889	2.626	4.046	
100	6.319	5.269	4.096	2.774	4.279	
105	6.658	5.541	4.303	2.923	4.513	
110	6.998	5.814	4.509	3.072	4.75	
115	7.341	6.087	4.715	3.223	4.988	
120	7.685	6.36	4.92	3.374	5.228	
125	8.031	6.634	5.124	3.527	5.47	
130	8.379	6.909	5.328	3.680	5.714	
135	8.729	7.184	5.532	3.834	5.959	
140	9.081	7.459	5.735	3.989	6.206	
140	9.434	7.734	5.937	4.145	6.454	
143	9.789	8.01	6.138	4.143	6.704	
155	10.145	8.286	6.339	4.459	6.956	
160	10.143	8.562	6.54	4.618	7.209	
165	10.863	8.839	6.741	4.777	7.463	
170	11.224	9.115	6.941	4.937	7.72	
175	11.587	9.392	7.14	5.098	7.977	
180	11.951	9.669	7.14	5.259	8.237	
185	12.317	9.947	7.54	5.422	8.497	
190	12.684	10.224	7.739	5.585	8.759	
190	13.052	10.224	7.939	5.749	9.023	
200	13.421	10.301	8.138	5.913	9.023	
200	13.792	11.056	8.338	6.079	9.555	
205	14.164	11.334	8.539	6.245	9.822	
210	14.104	11.612	8.739	6.411	9.822	
215	14.537		8.940			
220 225	14.912	11.889 12.167	8.940 9.141	6.579 6.747	10.362 10.634	
225	15.207	12.167	9.141		10.834	
230	15.004	12.445	9.343 9.545	6.916 7.085	11.182	
235 240						
240 245	16.420 16.800	13.000 13.278	9.747 9.950	7.255 7.426	11.458 11.735	
245 250	17.181	13.278	9.950 10.153	7.426 7.597	12.013	
200	17.101	13.555	10.133	1.091	12.013	

	mV in degrees C					
Temp C	E	J	K	N	Т	
255	17.562	13.833	10.357	7.769	12.293	
260	17.945	14.110	10.561	7.941	12.574	
265	18.328	14.388	10.766	8.114	12.856	
270	18.713	14.665	10.971	8.288	13.139	
275	19.098	14.942	11.176	8.462	13.423	
280	19.484	15.219	11.382	8.637	13.709	
285	19.871	15.496	11.588	8.812	13.995	
290	20.259	15.773	11.795	8.988	14.283	
295	20.647	16.050	12.001	9.164	14.572	
300	21.036	16.327	12.209	9.341	14.862	
305	21.426	16.604	12.416	9.519	15.153	
310	21.817	16.881	12.624	9.696	15.445	
315	22.208	17.157	12.831	9.875	15.738	
320	22.600	17.434	13.040	10.054	16.032	
325	22.993	17.710	13.248	10.233	16.327	
330	23.386	17.986	13.457	10.413	16.624	
335	23.780	18.262	13.665	10.593	16.921	
340	24.174	18.538	13.874	10.774	17.219	
345	24.569	18.814	14.084	10.955	17.518	
350	24.964	19.090	14.293	11.136	17.819	
355	25.360	19.366	14.503	11.318	18.120	
360	25.757	19.642	14.713	11.501	18.422	
365	26.154	19.918	14.923	11.683	18.725	
370	26.552	20.194	15.133	11.867	19.030	
375	26.950	20.469	15.343	12.050	19.335	
380	27.348	20.745	15.554	12.234	19.641	
385	27.747	21.021	15.764	12.418	19.947	
390	28.146	21.297	15.975	12.603	20.255	
395	28.546	21.572	16.186	12.788	20.563	
400	28.946	21.848	16.397	12.974	20.872	
405	29.346	22.124	16.608	13.159		
410	29.747	22.400	16.820	13.346		
415	30.148	22.676	17.031	13.532		
420	30.550	22.952	17.243	13.719		
425	30.952	23.228	17.455	13.906		
430	31.354	23.504	17.667	14.094		
435	31.756	23.780	17.879	14.281		
440	32.159	24.057	18.091	14.469		
445	32.562	24.333	18.303	14.658		
450	32.965	24.610	18.516	14.846		
455	33.368	24.887	18.728	15.035		
460	33.772	25.164	18.941	15.225		
465	34.175	25.442	19.154	15.414		
470	34.579	25.720	19.366	15.604		
475	34.983	25.998	19.579	15.794		
480	35.387	26.276	19.792	15.984		
485	35.792	26.555	20.005	16.175		
490	36.196	26.834	20.218	16.366		
495	36.601	27.113	20.431	16.557		
500	37.005	27.393	20.644	16.748		

Millivolts vs Temperature Thermocouple Reference Table

mV vs T °F

	mV in degrees F					
Temp F	E	J	K	N	т	
-60	-2.846	-2.483	-1.929	-1.296	-1.857	
-55	-2.699	-2.353	-1.830	-1.228	-1.762	
-50 -45	-2.552 -2.404	-2.223 -2.092	-1.729 -1.628	-1.160 -1.092	-1.667 -1.572	
-40	-2.255	-1.961	-1.527	-1.023	-1.475	
-35	-2.105	-1.828	-1.425	-0.954	-1.378	
-30	-1.953	-1.695	-1.322	-0.884	-1.279	
-25 -20	-1.801 -1.648	-1.562 -1.428	-1.218 -1.114	-0.814 -0.744	-1.181 -1.081	
-15	-1.494	-1.293	-1.010	-0.674	-0.980	
-10	-1.339	-1.158	-0.905	-0.603	-0.879	
-5	-1.183	-1.022	-0.799	-0.532	-0.777	
0 5	-0.868 -1.026	-0.886 -0.749	-0.586 -0.692	-0.461 -0.390	-0.675 -0.571	
10	-0.550	-0.611	-0.370	-0.318	-0.467	
15	-0.709	-0.473	-0.478	-0.246	-0.362	
20	-0.227	-0.334	-0.153	-0.174	-0.256	
25 30	-0.389 0.098	-0.195 -0.056	-0.262 0.066	-0.102	-0.150 -0.043	
35	-0.065	0.084	-0.044	0.928	0.065	
40	0.426	0.225	0.286	1.065	0.173	
45	0.262	0.365	0.176	1.202	0.282	
50 55	0.591 0.757	0.507	0.397 0.508	1.340	0.391 0.501	
60	0.924	0.791	0.619	1.619	0.611	
65	1.091	0.933	0.731	1.760	0.723	
70	1.259	1.076	0.843	1.902	0.834	
75 80	1.427 1.597	1.220	0.955	2.045	0.947	
80 85	1.597	1.508	1.181	2.189	1.060	
90	1.938	1.652	1.294	2.480	1.288	
95	2.109	1.797	1.407	2.626	1.403	
100 105	2.281 2.454	1.942	1.521 1.635	2.774 2.923	1.519 1.635	
110	2.628	2.000	1.749	3.072	1.752	
115	2.802	2.380	1.863	3.223	1.870	
120	2.977	2.527	1.977	3.374	1.988	
125 130	3.153 3.330	2.673	2.092	3.527 3.680	2.107	
130	3.507	2.968	2.207	3.834	2.227	
140	3.685	3.116	2.436	3.989	2.468	
145	3.863	3.264	2.552	4.145	2.590	
150	4.042	3.412 3.560	2.667	4.302	2.712	
155 160	4.222 4.403	3.560	2.782 2.897	4.459 4.618	2.835 2.958	
165	4.584	3.858	3.013	4.777	3.082	
170	4.766	4.007	3.128	4.937	3.207	
175	4.948	4.157	3.244	5.098	3.333	
180 185	5.131 5.315	4.306 4.456	3.359 3.474	5.259 5.422	3.459 3.585	
190	5.500	4.606	3.590	5.585	3.712	
195	5.685	4.757	3.705	5.749	3.840	
200	5.871	4.907	3.820	5.913	3.968	
205 210	6.057 6.244	5.058 5.209	3.935 4.050	6.079 6.245	4.097 4.227	
215	6.432	5.360	4.165	6.411	4.357	
220	6.620	5.511	4.280	6.579	4.487	
225	6.809	5.662	4.395	6.747	4.618	
230 235	6.998 7.188	5.814 5.965	4.509 4.623	6.916 7.085	4.750 4.882	
235	7.100	6.117	4.023	7.255	5.015	
245	7.570	6.269	4.852	7.426	5.148	
250	7.762	6.421	4.965	7.597	5.282	
255 260	7.954 8.147	6.573 6.726	5.079 5.192	7.769 7.941	5.416 5.551	
265	8.340	6.878	5.306	8.114	5.687	
270	8.535	7.031	5.419	8.288	5.823	
275	8.729	7.184	5.532	8.462	5.959	
280 285	8.924 9.120	7.336 7.489	5.644 5.757	8.637 8.812	6.096 6.233	
285 290	9.120 9.316	7.489 7.642	5.757	8.812 8.988	6.233 6.371	
295	9.513	7.795	5.982	9.164	6.510	
300	9.710	7.949	6.094	9.341	6.648	
305 310	9.907	8.102	6.205 6.317	9.519	6.788 6.928	
310 315	10.106 10.304	8.255 8.409	6.317 6.429	9.696 9.875	6.928 7.068	
320	10.503	8.562	6.540	10.054	7.209	
325	10.703	8.716	6.652	10.233	7.350	
330	10.903	8.869	6.763 6.874	10.413	7.492	
335 340	11.104 11.305	9.023 9.177	6.874 6.985	10.593 10.774	7.634 7.777	
345	11.506	9.331	7.096	10.955	7.920	
350	11.708	9.485	7.207	11.136	8.064	
355	11.911	9.639	7.318	11.318	8.208	
360 365	12.113 12.317	9.793 9.947	7.429 7.540	11.501 11.683	8.352 8.497	
365	12.317	9.947	7.650	11.867	8.643	
375	12.724	10.255	7.761	12.050	8.789	
380	12.929	10.409	7.872	12.234	8.935	
385 390	13.134 13.339	10.563 10.717	7.983	12.418	9.082 9.229	
390 395	13.539	10.717	8.094 8.205	12.603 12.788	9.229 9.377	
400	13.751	11.025	8.316	12.974	9.525	

	mV in degrees F					
Temp F	Е	J	К	N	т	
405	13.957	11.180	8.372	6.152	9.673	
410	14.164	11.334	8.486	6.245	9.822	
415	14.371	11.488	8.600	6.337	9.972	
420	14.579	11.642	8.715	6.430	10.122	
425	14.787	11.797	8.829	6.523	10.272	
430 435	14.995	11.951 12.105	8.943	6.616	10.423	
435	15.204 15.413	12.105	9.057 9.172	6.710 6.803	10.574 10.725	
440	15.622	12.200	9.172	6.897	10.725	
4450	15.831	12.568	9.400	6.991	11.029	
455	16.041	12.722	9.515	7.085	11.182	
460	16.252	12.877	9.629	7.179	11.335	
465	16.462	13.031	9.744	7.274	11.489	
470	16.673	13.185	9.858	7.369	11.643	
475	16.884	13.339	9.973	7.464	11.797	
480	17.096	13.494	10.088	7.559	11.951	
485	17.308	13.648	10.202	7.654	12.106	
490	17.520	13.802	10.317	7.750	12.262	
495	17.732	13.956	10.432	7.845	12.418	
500	17.945	14.110	10.547	7.941	12.574	
505	18.158	14.264	10.662	8.037	12.730	
510	18.371	14.418	10.776	8.134	12.887	
515	18.585	14.573	10.891	8.230	13.045	
520	18.798	14.727	11.006	8.327	13.202	
525	19.012	14.881	11.121 11.237	8.423	13.360 13.518	
530 535	19.227	15.035		8.520		
535 540	19.441 19.656	15.189	11.352 11.467	8.617 8.715	13.677 13.836	
540	19.871	15.343 15.496	11.582	8.812	13.995	
550	20.086	15.650	11.697	8.910	14.155	
555	20.302	15.804	11.813	9.008	14.315	
560	20.517	15.958	11.928	9.105	14.476	
565	20.733	16.112	12.043	9.204	14.636	
570	20.950	16.266	12.159	9.302	14.797	
575	21.166	16.419	12.274	9.400	14.959	
580	21.383	16.573	12.390	9.499	15.121	
585	21.600	16.727	12.506	9.598	15.283	
590	21.817	16.881	12.621	9.696	15.445	
595	22.034	17.034	12.737	9.795	15.608	
600	22.252	17.188	12.853	9.895	15.771	
605	22.469	17.341	12.969	9.994	15.934	
610	22.687	17.495	13.085	10.093	16.098	
615 620	22.905	17.649	13.200	10.193 10.293	16.262 16.426	
625	23.124 23.342	17.802 17.955	13.316 13.433	10.293	16.591	
630	23.542	18.109	13.549	10.393	16.756	
635	23.780	18.262	13.665	10.593	16.921	
640	23.999	18.416	13.781	10.693	17.086	
645	24.218	18.569	13.897	10.794	17.252	
650	24.437	18.722	14.013	10.894	17.418	
655	24.657	18.876	14.130	10.995	17.585	
660	24.876	19.029	14.246	11.096	17.752	
665	25.096	19.182	14.363	11.197	17.919	
670	25.316	19.336	14.479	11.298	18.086	
675	25.537	19.489	14.596	11.399	18.254	
680	25.757	19.642	14.712	11.501	18.422	
685	25.977	19.795	14.829	11.602	18.591	
690	26.198	19.949	14.946	11.704	18.759	
695 700	26.419 26.640	20.102 20.255	15.063 15.179	11.805 11.907	18.928 19.097	
700	26.861	20.255	15.179	12.009	19.097	
703	27.082	20.408	15.413	12.009	19.437	
715	27.304	20.715	15.530	12.214	19.607	
713	27.525	20.868	15.647	12.316	19.777	
725	27.747	21.021	15.764	12.418	19.947	
730	27.969	21.174	15.881	12.521	20.118	
735	28.191	21.327	15.998	12.624	20.289	
740	28.413	21.480	16.116	12.726	20.460	
745	28.635	21.634	16.233	12.829	20.632	
750	28.857	21.787	16.350	12.932	20.803	

Г	mV in degrees F					
Temp F	E J		K	N		
755	29.079	21.940	16.468	13.036		
760	29.302	22.093	16.585	13.139		
765	29.525	22.035	16.702	13.242		
703	29.747	22.240	16.820	13.346		
775	29.747	22.400	16.937	13.340		
780	30.193	22.333	17.055	13.553		
785	30.193	22.708	17.055	13.657		
785	30.418	22.860	17.173			
790				13.760		
	30.862	23.166	17.408	13.864		
800	31.086	23.320	17.526	13.969		
805	31.309	23.473	17.643	14.073		
810	31.533	23.627	17.761	14.177		
815	31.756	23.780	17.879	14.281		
820	31.980	23.934	17.997	14.386		
825	32.204	24.087	18.115	14.490		
830	32.427	24.241	18.233	14.595		
835	32.651	24.395	18.351	14.700		
840	32.875	24.549	18.469	14.804		
845	33.099	24.702	18.587	14.909		
850	33.323	24.856	18.705	15.014		
855	33.547	25.010	18.823	15.119		
860	33.772	25.164	18.941	15.225		
865	33.996	25.318	19.059	15.330		
870	34.220	25.473	19.177	15.435		
875	34.445	25.627	19.295	15.541		
880	34.669	25.781	19.414	15.646		
885	34.893	25.936	19.532	15.752		
890	35.118	26.090	19.650	15.857		
895	35.343	26.245	19.768	15.963		
900	35.567	26,400	19.887	16.069		
905	35.792	26.555	20.005	16.175		
910	36.016	26,710	20.123	16.281		
915	36.241	26.865	20.242	16.387		
920	36,466	27.020	20.360	16.493		
925	36.691	27.175	20.479	16.599		
930	36.915	27.330	20.597	16.705		
935	37.140	27.486	20.715	16.812		
940	37.365	27.642	20.834	16.918		
945	37.590	27.797	20.952	17.025		
950	37.815	27.953	21.071	17.131		
955	38.040	28.109	21.189	17.238		
960	38.265	28.266	21.308	17.344		
965	38.489	28.422	21.308	17.451		
970	38.714	28.579	21.544	17.558		
975	38.939	28.735	21.663	17.665		
980	39.164	28.892	21.781	17.772		
985	39.389	29.049	21.900	17.879		
990	39.614	29.206	22.018	17.986		
995	39.839	29.363	22.137	18.093		
1000	40.064	29.521	22.255	18.200		

www.burnsengineering.com

Custom solutions designed for your specific needs.

Burns Engineering has a long history of designing and building temperature sensors to meet the measurement needs of unique and varied applications. The products in this catalog were specifically developed to meet field requirements and allow for configured-to-order flexibility. Not sure what product is right for your application? Our application engineering group is here to help you select, configure, and/or custom design the right product for your specific needs.

Burns Engineering is a leading supplier of What will your solution BE? temperature measurement solutions for all your process and metrology applications. Your processes require temperature measurement **Series 100 Thermocouples** solutions that you can depend on. We understand that measurement accuracy, reliability and the second second consistency are important to your success. Your measurement is our mission. Turn to Burns as your Temperature Measurement Experts[®] **RTDology**[®] Temperature Training **RTD** Accuracy **Complementary Online Education RTD** Selection لا & Application RTDology[®] - learn how to build confidence in your temperature measurements. RTD vs. To learn more about our Thermocouple online sessions snap or visit Optimizing RTDology.com Measurements BURNS

Burns Engineering | 10201 Bren Rd. E. Minnetonka, MN 55343 | email: info@burnsengineering.com Phone Toll Free: 800-328-3871 | Phone (Local): 952-935-4400 | Fax: 952-935-8782

Product images provided by Sr. Applications Engineer and Photographer Bill Bergquist.

Trademarks contained within this catalog:

Burns Engineering Logo, Temperature Measurement Experts are registered trademarks of Burns Engineering. INCONEL and Monel are trademarks of the Special Metals family of companies. Chromel & Alumel are Trademarks of Hoskins Manufacturing. Hastelloy is a registered trademark of Haynes Int'I Inc.

