Using an Ice Bath to Approximate the Triple Point of Water When Calibrating Secondary Standard Platinum Resistance Thermometers

> John Zwak Burns Engineering

Learning Objectives

- Learn about two simplified methods to determine the RTPW value of PRTs using an ice bath instead of a TPW cell.
- Uncertainty analysis of these methods.

Problem Statement

- It is recommended that users monitor the RTPW of reference thermometers to assure proper performance, this is not always practical using TPW cells
 - □ Limits on size of PRTs some don't fit!
 - □ Limits on throughput inefficient
- TPW cells can be more expensive than alternate methods.
- TPW cells can be more difficult to work with and maintain than alternate methods.

Objective

- Demonstrate that the RTPW of a reference PRT can be determined with adequate uncertainty using non-TPW cell methods.
 - □ Theoretically explain
 - Experimentally demonstrate
- Compare results for SPRT, Secondary Standard, and Precision Industrial PRTs.

Test Units

10 Thermometers were tested

- \Box 1 metal sheath 25.5 Ω SPRT, 1mK accuracy
- \Box 1 quartz sheath 25.5 Ω SPRT, 1mK accuracy
- □ 4 100 Ω Secondary Standard PRTs, .003925 TCR, 18mK accuracy
- □ 4 100 Ω Precision Industrial PRTs, .003851 TCR, 50mK accuracy.

Test Units

- All commercially available and regularly used as reference thermometers.
- Accuracies include short term UUT performance when used over rated range.

Method 1 – TPW cell

- □ TPW cell as temperature source
- Resistance measured using a 1 ppm AC resistance bridge
 - Ratio UUT over 100 Ω standard resistor
 - 1 mA sensing current
- Ref. ASTM Standard E1750 Standard Guide for Use of Water Triple Point Cells.
- 3 measurements made on each UUT

NCSLI - August 6, 2008

NCSLI - August 6, 2008

Method 1 Advantages

 Lowest uncertainty of the methods

 Method 1 Disadvantages

 Requires use of a TPW cell
 Limits on size of PRTs
 Limits on throughput

Method 2 – Comparison Calibration

- Ice bath made from distilled water/ice used as temperature source
- Direct comparison against SPRT
- □ Same 1 ppm AC bridge, 1 mA current
 - Ratio UUT over SPRT
 - Multiply ratio by RTPW of SPRT to obtain RTPW of UUT
- 3 measurements made on each UUT

Method 2 Advantages

- Does not require a standard resistor or maintenance bath
- Adaptable to various sensor geometries
- □ Improves throughput multiple sensors in bath
- □ Insensitive to purity of ice/water
- Method 2 Disadvantages
 - Requires use of SPRT
 - Larger uncertainty than TPW cell

■ Method 3 – Ice Bath as 0 °C Source

Ice bath made from distilled water/ice used as temperature source

□ Same 1 ppm AC bridge, 1 mA current

- Ratio UUT over 100 Ω standard resistor
- Nominal ohmic correction added to account for difference between 0°C ice and 0.01 °C TPW.
- Ref. ASTM Standard E563 Standard Practice for Preparation and Use of an Ice-Point Bath as a Reference Temperature

□ 3 measurements made on each UUT.

Method 3

□ Ohmic Corrections to convert R0 to RTPW

UUT	Nominal RTPW	Ohmic Correction
SPRT	25.5 Ω	0.0010
SSPRT	100 Ω	0.0040
IPRT	100 Ω	0.0039

Method 3 Advantages

- Does not require SPRT or TPW cell
- Adaptable to various sensor geometries
- Improves throughput multiple sensors in bath

Method 3 Disadvantages Sensitive to purity of ice/water

□ Larger uncertainty than TPW cell

- Estimates for each PRT type for each method.
- Identified all significant sources, combined them and expanded to 95%, k=2

- TPW cell uncertainty
- TPW cell reproducibility
- Ref SPRT uncertainty
- Ref SPRT drift
- Bath Stability/Uniformity
- Bridge Uncertainty

- Bridge resolution
- Standard Resistor uncertainty
- Standard Resistor drift
- Standard Resistor thermal effects
- Ohmic correction error
- Repeatability & Reproducibility

Tuble 74.2D. Cheertainty and					Standard
	a a	TT.			Standard
	Source	Туре	Confidence	k	Uncertainty
Source	Uncertainty	(A/B)	(%)	factor	(mK)
Uncertainty of reference SPRT	0.78 mK	В	63.1	1	0.78
Resistance					
The standard uncertainty of the RTPW value used					
for this measurement is 0.000078 ohms, this					
equates to 0.78 mK. This includes short term drift.	0.00 K	D	05.45	2	0.00
Drift of reference SPR I	0.00 mK	в	95.45	2	0.00
Resistance					
Short term drift is included in value above. Long					
daily					
Bridge Uncertainty	0.25 mK	В	95.45	2	13
Bridge spec is 1 ppm or 1 digit, which ever is	0.20 mix	Б	20,10	-	.10
larger. For this measurement 1 ppm is larger, 1 ppm					
equates to 0.25 mK This is assumed as a 95% (k=2)					
coverage.	0.12 mV	р	100	1 722	0.07
Bridge Resolution	0.15 mK	в	100	1.732	0.07
this which equates to 0.13 mK. This is assumed as					
a 100% confidence rectangular distribution,					
(k=1.732).					
Ice Bath Stability and Uniformity	3.0 mK	В	95.45	2	1.50
Periodic testing of our ice bath shows that it is					
consistently within 3.0 mK of 0°C. For this analysis					
mK with a 95% (k=2) coverage.					
Combined Standard Uncertainty for	1.70				
This does not include Repeatability and Reproducibility component which can be heavily influenced by the UUT.					
Repeatability and Reproducibility	0.36 mK	А	63.2	1	0.36
R&R for this UUT using this method is 0.36 mK					
Standard Uncertainty = RSS Total = 1.73					
Expanded Uncertainty 0.5% (t_{-2}) 2.5 m					2.5 mV
	Expanded Ordertainty, 95% (K=2) 5.5 IIK				

Table A.2B. Uncertainty analysis of a SSPRT by comparison to a SPRT (Method 2).

PRT	Method 1	Method 2	Method 3
Туре	TPW Cell	Comparison Cal	Ice Bath as 0 ℃ Source
SPRT	1.6 mK	3.7 mK	3.5 mK
SSPRT	1.2 mK	3.5 mK	3.3 mK
IPRT	1.9 mK	3.5 mK	3.3 mK

Notes on uncertainty estimates

- Method 1 had lowest uncertainty
- □ Methods 2 and 3 only differ by .2 mK
- SPRT did not have lowest uncertainty!
 - Bridge uncertainty = 1 digit = 1 mK
 - Bridge resolution = 1 digit = 1 mK
- Low R&R for all methods because no other thermal exposures, not representative of in service conditions.
 - UUT repeatability/hysteresis would increase uncertainty in SSPRT & IPRT
 - Not a result of method, rather UUT capabilities

- Used average value of 3 resistance measurements from Method 1 as baseline value.
- Determined difference between each measurement and the baseline value
- Converted difference in Ω's to difference in ℃ using nominal sensitivity.

Method 1 – TPW Cell

- No variation in SPRT measurements, likely due to resolution of bridge.
- Variation in SSPRT and IPRT measurements due to UUT short term repeatability and increased sensitivity of bridge.

Method 2 – Comparison Cal

Shows variability in all UUT types, all values grouped within ±2 mK from average TPW cell value

Method 3 – Ice Bath as 0°C Source

- Comparable to method 2 except mean values are biased low 1.5 to 2.5 mK
 - Likely caused by purity of ice/water
- All measurements within ±3 mK of average TWP cell value

Conclusion

- Using an Ice Bath as a temperature source can be more practical than using a TPW cell when accuracy limitations permit.
- For the SSPRT with 18 mK accuracy, and IPRT with 50 mK accuracy, a 4:1 TUR can be met using any of the 3 methods.
- For the SPRT with 1 mK accuracy, a TPW cell is best method unless full accuracy is not required.

Thank You

- Burns Engineering Booth #101
- •jzwak@burnsengineering.com
- •www.burnsengineering.com